\(\int \cot ^3(c+d x) (a+a \sin (c+d x)) \, dx\) [356]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 54 \[ \int \cot ^3(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {a \csc (c+d x)}{d}-\frac {a \csc ^2(c+d x)}{2 d}-\frac {a \log (\sin (c+d x))}{d}-\frac {a \sin (c+d x)}{d} \]

[Out]

-a*csc(d*x+c)/d-1/2*a*csc(d*x+c)^2/d-a*ln(sin(d*x+c))/d-a*sin(d*x+c)/d

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 54, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {2786, 76} \[ \int \cot ^3(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {a \sin (c+d x)}{d}-\frac {a \csc ^2(c+d x)}{2 d}-\frac {a \csc (c+d x)}{d}-\frac {a \log (\sin (c+d x))}{d} \]

[In]

Int[Cot[c + d*x]^3*(a + a*Sin[c + d*x]),x]

[Out]

-((a*Csc[c + d*x])/d) - (a*Csc[c + d*x]^2)/(2*d) - (a*Log[Sin[c + d*x]])/d - (a*Sin[c + d*x])/d

Rule 76

Int[((d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_))*((e_) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*
x)*(d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && IGtQ[p, 0] && EqQ[b*e + a*f, 0] &&  !(ILtQ[n
 + p + 2, 0] && GtQ[n + 2*p, 0])

Rule 2786

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(p_.), x_Symbol] :> Dist[1/f, Subst[I
nt[x^p*((a + x)^(m - (p + 1)/2)/(a - x)^((p + 1)/2)), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& EqQ[a^2 - b^2, 0] && IntegerQ[(p + 1)/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {(a-x) (a+x)^2}{x^3} \, dx,x,a \sin (c+d x)\right )}{d} \\ & = \frac {\text {Subst}\left (\int \left (-1+\frac {a^3}{x^3}+\frac {a^2}{x^2}-\frac {a}{x}\right ) \, dx,x,a \sin (c+d x)\right )}{d} \\ & = -\frac {a \csc (c+d x)}{d}-\frac {a \csc ^2(c+d x)}{2 d}-\frac {a \log (\sin (c+d x))}{d}-\frac {a \sin (c+d x)}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 60, normalized size of antiderivative = 1.11 \[ \int \cot ^3(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {a \csc (c+d x)}{d}-\frac {a \left (\cot ^2(c+d x)+2 \log (\cos (c+d x))+2 \log (\tan (c+d x))\right )}{2 d}-\frac {a \sin (c+d x)}{d} \]

[In]

Integrate[Cot[c + d*x]^3*(a + a*Sin[c + d*x]),x]

[Out]

-((a*Csc[c + d*x])/d) - (a*(Cot[c + d*x]^2 + 2*Log[Cos[c + d*x]] + 2*Log[Tan[c + d*x]]))/(2*d) - (a*Sin[c + d*
x])/d

Maple [A] (verified)

Time = 0.17 (sec) , antiderivative size = 67, normalized size of antiderivative = 1.24

method result size
derivativedivides \(\frac {a \left (-\frac {\cos ^{4}\left (d x +c \right )}{\sin \left (d x +c \right )}-\left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )\right )+a \left (-\frac {\left (\cot ^{2}\left (d x +c \right )\right )}{2}-\ln \left (\sin \left (d x +c \right )\right )\right )}{d}\) \(67\)
default \(\frac {a \left (-\frac {\cos ^{4}\left (d x +c \right )}{\sin \left (d x +c \right )}-\left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )\right )+a \left (-\frac {\left (\cot ^{2}\left (d x +c \right )\right )}{2}-\ln \left (\sin \left (d x +c \right )\right )\right )}{d}\) \(67\)
risch \(i a x +\frac {i a \,{\mathrm e}^{i \left (d x +c \right )}}{2 d}-\frac {i a \,{\mathrm e}^{-i \left (d x +c \right )}}{2 d}+\frac {2 i a c}{d}-\frac {2 i a \left (i {\mathrm e}^{2 i \left (d x +c \right )}+{\mathrm e}^{3 i \left (d x +c \right )}-{\mathrm e}^{i \left (d x +c \right )}\right )}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{2}}-\frac {a \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )}{d}\) \(118\)
parallelrisch \(\frac {a \left (8 \ln \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-8 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \left (\csc ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \cot \left (\frac {d x}{2}+\frac {c}{2}\right ) \cos \left (d x +c \right )-3 \left (\cot ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-4 \sec \left (\frac {d x}{2}+\frac {c}{2}\right ) \csc \left (\frac {d x}{2}+\frac {c}{2}\right )+3 \left (\csc ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-8 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d}\) \(132\)
norman \(\frac {-\frac {a}{8 d}-\frac {a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 d}-\frac {3 a \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {a \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}-\frac {a \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d}}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+\frac {a \ln \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}\) \(137\)

[In]

int(cos(d*x+c)^3*csc(d*x+c)^3*(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(a*(-1/sin(d*x+c)*cos(d*x+c)^4-(2+cos(d*x+c)^2)*sin(d*x+c))+a*(-1/2*cot(d*x+c)^2-ln(sin(d*x+c))))

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 69, normalized size of antiderivative = 1.28 \[ \int \cot ^3(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {2 \, {\left (a \cos \left (d x + c\right )^{2} - a\right )} \log \left (\frac {1}{2} \, \sin \left (d x + c\right )\right ) + 2 \, {\left (a \cos \left (d x + c\right )^{2} - 2 \, a\right )} \sin \left (d x + c\right ) - a}{2 \, {\left (d \cos \left (d x + c\right )^{2} - d\right )}} \]

[In]

integrate(cos(d*x+c)^3*csc(d*x+c)^3*(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/2*(2*(a*cos(d*x + c)^2 - a)*log(1/2*sin(d*x + c)) + 2*(a*cos(d*x + c)^2 - 2*a)*sin(d*x + c) - a)/(d*cos(d*x
 + c)^2 - d)

Sympy [F]

\[ \int \cot ^3(c+d x) (a+a \sin (c+d x)) \, dx=a \left (\int \cos ^{3}{\left (c + d x \right )} \csc ^{3}{\left (c + d x \right )}\, dx + \int \sin {\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )} \csc ^{3}{\left (c + d x \right )}\, dx\right ) \]

[In]

integrate(cos(d*x+c)**3*csc(d*x+c)**3*(a+a*sin(d*x+c)),x)

[Out]

a*(Integral(cos(c + d*x)**3*csc(c + d*x)**3, x) + Integral(sin(c + d*x)*cos(c + d*x)**3*csc(c + d*x)**3, x))

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 45, normalized size of antiderivative = 0.83 \[ \int \cot ^3(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {2 \, a \log \left (\sin \left (d x + c\right )\right ) + 2 \, a \sin \left (d x + c\right ) + \frac {2 \, a \sin \left (d x + c\right ) + a}{\sin \left (d x + c\right )^{2}}}{2 \, d} \]

[In]

integrate(cos(d*x+c)^3*csc(d*x+c)^3*(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/2*(2*a*log(sin(d*x + c)) + 2*a*sin(d*x + c) + (2*a*sin(d*x + c) + a)/sin(d*x + c)^2)/d

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.85 \[ \int \cot ^3(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {2 \, a \log \left ({\left | \sin \left (d x + c\right ) \right |}\right ) + 2 \, a \sin \left (d x + c\right ) + \frac {2 \, a \sin \left (d x + c\right ) + a}{\sin \left (d x + c\right )^{2}}}{2 \, d} \]

[In]

integrate(cos(d*x+c)^3*csc(d*x+c)^3*(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/2*(2*a*log(abs(sin(d*x + c))) + 2*a*sin(d*x + c) + (2*a*sin(d*x + c) + a)/sin(d*x + c)^2)/d

Mupad [B] (verification not implemented)

Time = 10.30 (sec) , antiderivative size = 146, normalized size of antiderivative = 2.70 \[ \int \cot ^3(c+d x) (a+a \sin (c+d x)) \, dx=\frac {a\,\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}{d}-\frac {a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2\,d}-\frac {10\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{2}+2\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+\frac {a}{2}}{d\,\left (4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\right )}-\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,d}-\frac {a\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d} \]

[In]

int((cos(c + d*x)^3*(a + a*sin(c + d*x)))/sin(c + d*x)^3,x)

[Out]

(a*log(tan(c/2 + (d*x)/2)^2 + 1))/d - (a*tan(c/2 + (d*x)/2))/(2*d) - (a/2 + 2*a*tan(c/2 + (d*x)/2) + (a*tan(c/
2 + (d*x)/2)^2)/2 + 10*a*tan(c/2 + (d*x)/2)^3)/(d*(4*tan(c/2 + (d*x)/2)^2 + 4*tan(c/2 + (d*x)/2)^4)) - (a*tan(
c/2 + (d*x)/2)^2)/(8*d) - (a*log(tan(c/2 + (d*x)/2)))/d